第25章 韓·數學鬼才·立(1 / 1)

屋子裡,徐雲正在侃侃而談:   “牛頓先生,韓立爵士計算發現,二項式定理中指數為分數時,可以用e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……來計算。”   說著徐雲拿起筆,在紙上寫下了一行字:   當n=0時,e^x>1。   “牛頓先生,這裡是從x^0開始的,用0作為起點討論比較方便,您可以理解吧?”   小牛點了點頭,示意自己明白。   隨後徐雲繼續寫道:   假設當n=k時結論成立,即e^x>1+x/1!+x^2/2!+x^3/3!+……+x^k/k!(x>0)   則e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^k/k!]>0   那麼當n=k+1時,令函數f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)   接著徐雲在f(k+1)上畫了個圈,問道:   “牛頓先生,您對導數有了解麼?”   小牛繼續點了點頭,言簡意賅的蹦出兩個字:   “了解。”   學過數學的朋友應該都知道。   導數和積分是微積分最重要的組成部分,而導數又是微分積分的基礎。   眼下已經時值1665年末,小牛對於導數的認知其實已經到了一個比較深奧的地步了。   在求導方麵,小牛的介入點是瞬時速度。   速度=路程/時間,這是小學生都知道的公式,但瞬時速度怎麼辦?   比如說知道路程s=t^2,那麼t=2的時候,瞬時速度v是多少呢?   數學家的思維,就是將沒學過的問題轉化成學過的問題。   於是牛頓想了一個很聰明的辦法:   取一個”很短”的時間段△t ,先算算t= 2到t=2+△t 這個時間段內,平均速度是多少。   v=s/t=(4△t+△t^2)/△t=4+△t。   當△t 越來越小,2+△t就越來越接近2 ,時間段就越來越窄。   △t 越來越接近0時,那麼平均速度就越來越接近瞬時速度。   如果△t小到了0 ,平均速度4+△t就變成了瞬時速度4。   當然了。   後來貝克萊發現了這個方法的一些邏輯問題,也就是△t到底是不是0。   如果是0,那麼計算速度的時候怎麼能用△t做分母呢?鮮為人...咳咳,小學生也知道0不能做除數。   到如果不是0,4+△t就永遠變不成4,平均速度永遠變不成瞬時速度。   按照現代微積分的觀念,貝克萊是在質疑lim△t→0是否等價於△t=0。   這個問題的本質實際上是在對初生微積分的一種拷問,用“無限細分”這種運動、模糊的詞語來定義精準的數學,真的合適嗎?   貝克萊由此引發的一係列討論,便是赫赫有名的第二次數學危機。   甚至有些悲觀黨宣稱數理大廈要坍塌了,我們的世界都是虛假的——然後這些貨真的就跳樓了,在奧地利還留有他們的遺像,某個撲街釣魚佬曾經有幸參觀過一次,跟七個小矮人似的,也不知道是用來被人瞻仰還是鞭屍的。   這件事一直到要柯西和魏爾斯特拉斯兩人的出現,才會徹底有了解釋與定論,並且真正定義了後世很多同學掛的那棵樹。   但那是後來的事情,在小牛的這個年代,新生數學的實用性是放在首位的,因此嚴格化就相對被忽略了。   這個時代的很多人都是一邊利用數學工具做研究,一邊用得出來的結果對工具進行改良優化。   偶爾還會出現一些倒黴蛋算著算著,忽然發現自己這輩子的研究其實錯了的情況。   總而言之。   在如今這個時間點,小牛對於求導還是比較熟悉的,隻不過還沒有歸納出係統的理論而已。   徐雲見狀又寫到:   對f(k+1)求導,可得f(k+1)'=e^x-1+x/1!+x^2/2!+x^3/3!+……+x^k/k!   由假設知f(k+1)'>0   那麼當x=0時。   f(k+1)=e^0-1-0/1!-0/2!-.-0/k+1!=1-1=0   所以當x>0時。   因為導數大於0,所以f(x)>f(0)=0   所以當n=k+1時f(k+1)=e^x-[1+x/1!+x^2/2!+x^3/3!+……+x^(k+1)/(k+1)]!(x>0)成立!   最後徐雲寫到:   綜上所屬,對任意的n有:   e^x>1+x/1!+x^2/2!+x^3/3!+……+x^n/n!(x>0)   論述完畢,徐雲放下鋼筆,看向小牛。   隻見此時此刻。   這位後世物理學的祖師爺正瞪大著那一雙牛眼,死死地盯著麵前的這張草稿紙。   誠然。   以目前小牛的研究進度,還不太好理解切線與麵積的真正內在含義。   但了解數學的人都知道,廣義二項式定理其實就是復變函數的泰勒級數的特殊情形。   這個級數與二項式定理是兼容的,係數符號也是與組合符號兼容的。   所以二項式定理可以由自然數冪擴充至復數冪,組合定義也可以由自然數擴充至復數。   隻不過徐雲在這裡留了一手,沒有告知小牛n為負數的時候就是無窮級數這件事。   因為按照正常的歷史線,無窮小量可是出自小牛之手,推導的過程還是交給他本人就好了。   就這樣過了幾分鐘,小牛方才回過神。   隻見他直接無視了身邊的徐雲,一個身位竄回座位,飛快的開始演算了起來。   看著全身心投入計算的小牛,徐雲也不生氣,畢竟這位祖師爺就是這種脾氣,可能也就在威廉·艾斯庫的麵前會相對好點了。   沙沙沙——   很快。   筆尖與稿紙接觸的聲音響起,一道道公式被飛快列出。   徐雲見狀思索片刻,轉身離開了屋子。   隨意在墻角找了個位置,抬頭看起了雲卷雲舒。   就這樣,兩個小時一轉而過。   就在徐雲盤算著自己下一步該如何落子的時候,木屋門忽然被人從中推開,小牛一臉激動的從內中竄了出來。   隻見他的眼中布滿了血絲,用力的朝徐雲揮了揮手中的稿紙:   “肥魚,負數、我推出了負數!一切都搞清楚了!   二項式指數不用去管它是正數還是負數,是整數還是分數,組合數對所有條件都成立!   楊輝三角,對,下一步就是研究楊輝三角!”   也不知道是不是太過激動的緣故,小牛壓根沒注意到,自己的假發都被震落到了地上。   看著滿臉紅光的小牛,徐雲心中也不由浮現出了一絲改變歷史的振奮感。   按照正常軌跡。找書苑 www.zhaoshuyuan.com   小牛要等到明年一月份收到一封約翰·提斯裡波蒂的信件後,才會開竅般的攻克一係列的疑點難點。   而約翰斯裡波蒂的那封信件中,提及的正是帕斯卡公開的三角圖形。   也就是說......   這個時空數學史的節點,第一次被改變了!   有了二項式開展的初步成果,小牛必然要不了多久時間,便會在楊輝三角的協助下構築出初步的流數術模型。   由此一來。   楊輝三角這個名字,也將會被鐫刻在數學王座的基底之上,那個本就該屬於它的位置!   縱使今後數百年世事變遷,滄海桑田,依舊無人能夠撼動!   華夏先賢之光,在這條時間線裡將永不蒙塵!   想到這兒,徐雲不由深吸一口氣,快步走上前:   “恭喜您了,牛頓先生。”   看著麵前東方麵孔的徐雲,小牛的臉上也了一股感慨。   那位未曾謀麵的韓立爵士,僅僅是留下的幾處隨筆就能為自己撥雲見日,僅假借肥魚這個不知相隔多少代的弟子之手,便能為自己推開一扇大門。   那麼韓立爵士本人的學識又能達到什麼樣的高度呢?   能想出這種展開式的天才,稱得上一句數學鬼才絕不為過吧?   原本自己以為笛卡爾先生已經天下無敵了,沒想到居然還有人比他更為勇猛!   看來自己的數理之路,依舊任重道遠啊......   ......   注:   為啥出圈指數是負的.....